Heart Disease Prediction System Using Supervised Learning Classifier

نویسندگان

  • Sellappan Palaniappan
  • Markos G. Tsipouras
چکیده

ISSN 2277 5099 | © 2012 Bonfring Abstract--Cardiovascular disease remains the biggest cause of deaths worldwide and the Heart Disease Prediction at the early stage is importance. In this paper Supervised Learning Algorithm is adopted for heart disease prediction at the early stage using the patient’s medical record is proposed and the results are compared with the known supervised classifier Support Vector Machine (SVM). The information in the patient record is classified using a Cascaded Neural Network (CNN) classifier. In the classification stage 13 attributes are given as input to the CNN classifier to determine the risk of heart disease. The proposed system will provide an aid for the physicians to diagnosis the disease in a more efficient way. The efficiency of the classifier is tested using the records collected from 270 patients. The results show the CNN classifier can predict the likelihood of patients with heart disease in a more efficient way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Intelligent application for Heart disease detection using Hybrid Optimization algorithm

Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

Evaluation of Machine Learning Methods to Predict Coronary Artery Disease Using Metabolomic Data

Metabolomic data can potentially enable accurate, non-invasive and low-cost prediction of coronary artery disease. Regression-based analytical approaches however might fail to fully account for interactions between metabolites, rely on a priori selected input features and thus might suffer from poorer accuracy. Supervised machine learning methods can potentially be used in order to fully exploi...

متن کامل

A Novel Multi Label Learning Based on Clustering Integrated Ensemble Classifier Chain Micro Prediction Models

Most of the real world problems are concerned with assignment of multiple target labels to the instances. The proposed model aims to increase the accuracy by incorporating supervised and semi supervised learning. K Means clustering is employed which creates K clusters based on the initialization of cluster centroids. Datasets are clustered based on its distribution in the Euclidean space. Clust...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013